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a b s t r a c t

Piping system vibrations exist in many fields. Vibration control is very important

because it can limit possible damage to pipe systems caused by vibrations. Applying the

idea of the Bragg scattering mechanism of phononic crystals (PCs), a pipe is designed as

a periodic composite material structure. Using the transfer matrix method, the band

structure of an infinite periodic straight pipe structure is calculated. With knowledge of

the vibration band gaps, a 3D space pipe system is designed with a composite material

periodic structure, and its various vibration modes’ frequency response functions are

calculated. The accuracy of the transfer matrix method is verified with the commercial

software MSC.Actran. The results show that the Bragg band gaps still exist in the 3D

periodic pipe structure, and vibrations are strongly attenuated within the frequency

ranges of the band gaps. Using the idea of PCs in piping systems provides a novel way to

reduce pipe vibration.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Piping systems have wide applications to areas such as designing heat exchanger tubes in chemical plants, main steam
pipes and hot/cold leg pipes in nuclear steam supply systems, oil pipelines, pump discharge lines, marine risers, etc. [1].
Inevitably, as the piping systems work, undesirable noise and vibrations are produced. The vibration not only emits noise
pollution but would also lead to a piping system surge, slow down the circulate reliability of system, deteriorate the work
environment or even paralyze the pipe system and machines. Therefore, the piping system vibration control makes great
sense for engineering applications and an extensive effort has been made in the analysis of the piping system vibrations
[1–8].

In the last decade, the propagation of elastic or acoustic waves in periodic composite materials called phononic crystals
(PCs) has received considerable attention [9–18]. The emphasis of these studies was focused on the existence of complete
elastic band gaps within which both sound and vibration are forbidden. There are two kinds of band gap formation in PCs:
the Bragg scattering mechanism and the locally resonant (LR) mechanism [19]. The most important characteristic of a PC is
its periodic structure [19]. Periodically engineered structures, such as railway lines on equi-spaced sleepers, antenna
systems, stiffened plates used in aircraft and ship panels, and truss structures on space stations have special characteristics
of free wave propagation with wave blocking and wave propagation frequency bands [2].

Studies have shown that the existence of Bragg gaps is strongly connected with large acoustic impedance between the
scatterers and the matrix material [19]. For PCs with band gaps induced by the Bragg scattering mechanism, their band gap
frequency ranges are wide. Furthermore, within this band gap frequency range, vibration wave propagation is strongly
attenuated.
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Sorokin modeled a straight pipe wall as a periodic cylindrical shell structure to determine the band gaps. Based on
Floquet theory, Sorokin analyzed the energy transmission in compound cylindrical shell periodic structures [3]. Yu
Dianlong et al. introduced the Bragg scattering mechanism and LR mechanism respectively into the straight pipe’s
structure design, and obtain corresponding band structure, and studied the flexural vibration wave propagation properties
within the band gaps [20]. There are many vibrational modes that exist in piping systems, such as longitudinal vibration,
flexural vibration, torsional vibration, and coupled vibration modes. To our knowledge, no work appears in the open
literature studying the coupled vibration properties of a 3D periodic pipe system.

In this paper, we base the design of a composite material pipe with a periodic structure on the Bragg scattering
mechanism of PCs. Using the transfer matrix (TM) method, we calculate the flexural vibration, longitudinal vibration,
and torsional vibration band gaps of an infinite straight periodic structure. Furthermore, we design a 3D piping
system composed of composite materials with a periodic structure and study its vibration transfer properties. In the
FRF calculation, we use the TM method, which is validated using the commercial software MSC.Actran. The frequency
response functions (FRFs) of the coupled mode vibration are calculated to investigate the coupled mode vibration
band gaps properties of the straight finite periodic pipe. Using the idea of PCs, the Bragg scattering mechanism,
and a periodic pipe structure with vibration band gaps, we provide a new way to control vibrations in piping
systems.
2. Pipe model and motion equations

For piping systems, in which the inside diameter of the pipe is much smaller than the pipe length, usually be calculated
based on Timoshenko beam model or Euler beam model [21]. The Euler beam equations do not take into consideration the
shear distortion and section moment of inertia. In order to calculate the flexural vibration FRF more accurately, in this
paper, we base our calculations on the Timoshenko beam model. Fig. 1 shows the straight periodic pipe structure designed
based on the Bragg scattering mechanism of PCs. Pipe A with length a1 and pipe B with length a2 repeatedly alternate along
the axial direction. Thus, the PC has a lattice constant of a ¼ a1+a2. Pipes A and B are made up of different materials, A and
B, or different geometrical parameters, respectively.

Fig. 2 shows the deformations and internal forces on a single pipe element for transfer vibration. In this paper, the pipe
wall is assumed to be linearly elastic, isotropic, prismatic, circular, and thin-walled, which implies that the longitudinal
A B

Fig. 1. The sketch map of periodic pipe structure. (a) Infinite periodic pipe structure and (b) Single pipe cell.
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Fig. 2. Deformations and internal forces for transfer vibration of a single pipe element.
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vibration of the pipe without fluid loading can be given as follows [21]:

qf z

qz
� Aprp

q2uz

qt2
¼ 0, (1)

f z � EAp
quz

qz
¼ 0, (2)

where f z is the axial force, uz is the pipe wall displacement in the axial direction, Ap is the cross-section area, rp is the
material density of pipe wall, E is Young’s modulus (considering that the damp modulus of material, E, can be written as
Eð1þ iZÞ, where Z is the damp modulus of the material), and t is the time.

For flexural vibration, the motion equations are given as follows [21]:

f x � GApks
qux

qz
�jy

� �
¼ 0, (3)

my � EIp
qjy

qz
¼ 0, (4)

qf x

qz
� rpAp

q2ux

qt2
¼ 0, (5)

qmy

qz
þ f x � rpIp

q2jy

qt2
¼ 0, (6)

where f x is the pipe cross-section shear force, ux is the displacement along the x-axis, jy is the cross-section slope, my is
the bending moment, Ip is the moment of inertia of the pipe, Ap is the cross-section area of the pipe, G is the shear modulus,
and ks ¼ 2ð1þ nÞ=ð4þ 3nÞ is the cross-section geometry shape parameter, n ¼ E=ð2GÞ � 1 is Poisson’s ratio.

The torsional vibration is defined as [21]

qmz

qz
� rpJp

q2cz

qt2
¼ 0, (7)

mz � GJp
qcz

qz
¼ 0, (8)

where mz is internal moment, cz is the rotation in the axis direction, and Jp is the polar moment of inertia for the pipe wall.

3. The TM method for band structure and the FRF of a straight pipe

3.1. Longitudinal vibration state vector

For a given oscillatory frequency, o, the solution of Eqs. (1) and (2) can be written in the form: f zðz; tÞ ¼ FzðzÞejot and
uzðz; tÞ ¼ UzðzÞejot , where j ¼ ð�1Þ1=2 and FzðzÞ and UzðzÞ are defined as

UzðzÞ ¼ A1ejlz þ A2e�jlz, (9)

FzðzÞ ¼ iEAplA1ejlz � iEAplA2e�jlz, (10)

where l ¼ o
ffiffiffiffiffiffiffiffiffiffiffi
rp=E

q
.

Eqs. (9) and (10) can be written in matrix form as follows:

UzðzÞ

FzðzÞ

" #
¼

ejlz e�jlz

iEAplejlz �iEAple�jlz

" #
A1

A2

" #
, (11)

which can be rewritten as

Paxial ¼ Taxial � A: (12)

3.2. Flexural vibration state vector in x�z plane

From Eqs. (3)–(6), we obtain

EIp
q4f x

qz4
þ rpAp

q2f x

qt2
� rpIp

q4f x

qz2@t2
þ

EIp

GApks

q2

qz2
rpAp þ

q2f x

qt2

 !
þ

rpAp

GApks

q2

qt2
rpAp

q2f x

qt2

 !
¼ 0. (13)
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For a given oscillatory frequency, o, the solution of f xðz; tÞ can be written as f xðz; tÞ ¼ FxðzÞejot , which can then be
substituted into Eq. (11) to obtain:

FxðzÞ ¼ A1el1z=l þ A2e�l1z=l þ A3ejl2z=l þ A4e�jl2z=l, (14)

where

l1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gþ 1

4
ðs� tÞ2

r
�
ðsþ tÞ

2

s
; s ¼

rpAp

GApks
o2l2; g ¼

rpAp

EIp
o2l4,

and l ¼ a1 or a2.
Further, uxðz; tÞ, jyðz; tÞ, and myðz; tÞ can be written as uxðz; tÞ ¼ UxðzÞejot , jyðz; tÞ ¼ CðzÞejot , and myðz; tÞ ¼ MyðzÞejot ,

and these equations can be substituted into Eqs. (3)–(6) to obtain

UxðzÞ ¼
�l3l1

EIpg
ðA1el1z=l � A2e�l1z=lÞ þ

�l3l2

EIpg
ðjA3ejl2z=l � jA4e�jl2z=lÞ, (15)

CyðzÞ ¼
�l2ðsþ l2

1Þ

EIpg
ðA1el1z=l þ A2e�l1z=lÞ þ

�l2ðsþ l2
2Þ

EIpg
ðA3ejl2z=l þ A4e�jl2z=lÞ, (16)

MyðzÞ ¼
�lðsþ l2

1Þl1

g
ðA1el1z=l � A2e�l1z=lÞ þ

�lðsþ l2
2Þl2

g
ð�jA3ejl2z=l þ jA4e�jl2z=lÞ. (17)

Eqs. (14)–(17) can be rewritten in matrix form

UxðzÞ

CyðzÞ

MyðzÞ

FxðzÞ

2
66664

3
77775 ¼

B1el1z=l �B1e�l1z=l jB2ejl2z=l �jB2e�jl2z=l

B3el1z=l B3e�l1z=l B4ejl2z=l B4e�jl2z=l

B5el1z=l �B5e�l1z=l �jB6ejl2z=l jB6e�jl2z=l

el1z=l e�l1z=l ejl2z=l e�jl2z=l

2
66664

3
77775

A1

A2

A3

A4

2
66664

3
77775, (18)

where

B1 ¼
�l3

EIpg
l1; B2 ¼

�l3

EIpg
l2; B3 ¼

�l2

EIpg
ðsþ l2

1Þ; B4 ¼
�l2

EIpg
ðs� l2

2Þ,

B5 ¼
�l

g ðsþ l2
1Þl1 and B6 ¼

�l

g ð�sþ l2
2Þl2.

The matrix in Eq. (18) can be rewritten in a shortened form

Pflex�xz ¼ T flex�xz � B: (19)

The flexural vibration in the y–z plane can be written as follows:

UyðzÞ

CxðzÞ

MxðzÞ

FyðzÞ

2
66664

3
77775 ¼

B1el1z=l �B1e�l1z=l jB2ejl2z=l �jB2e�jl2z=l

B3el1z=l B3e�l1z=l B4ejl2z=l B4e�jl2z=l

B5el1z=l �B5e�l1z=l �jB6ejl2z=l jB6e�jl2z=l

el1z=l e�l1z=l ejl2z=l e�jl2z=l

2
66664

3
77775

A1

A2

A3

A4

2
66664

3
77775, (20)

where B1, B2, B3, B4, B5, and B6 are the same as the flexural vibration in the x�z plane. Again, the matrix in Eq. (20) can be
rewritten in short form

Pflex�yz ¼ T flex�yz � C: (21)

3.3. Torsional vibration state vector

The solutions of Eqs. (7) and (8) can be expressed as

CzðzÞ

MzðzÞ

" #
¼

l
rpJpl

sinðl
z

l
Þ
�l
rpJpl

cosðl
z

l
Þ

cosðl
z

l
Þ sinðl

z

l
Þ

2
6664

3
7775

A1

A2

" #
, (22)

where l ¼ �olðrp=GÞ1=2, which can be rewritten as follows:

Ptorsion ¼ Ttorsion � D: (23)
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3.4. Band structure and FRFs

The pipe vibration state vector can be expressed as

ZstraightðzÞ ¼ Tstraight �W ; (24)

where

ZstraightðzÞ ¼ ½Paxial Pflex�xz Pflex�yz Ptorsion�
0

Tstraight ¼

Taxial

T flex�xz

T flex�yz

Ttorsion

2
66664

3
77775,

and W ¼ ½A B C D�0. The left and right state vector of pipe A in the nth cell as shown in Fig. 1 can be expressed as follows:

ZL;R
nA_s ¼ TL;R

A_s �WnA, (25)

and for pipe B

ZL;R
nB_s ¼ TL;R

B_s �WnB. (26)

The continuities of displacement, slope, bending moment, shear force, and axial force at the interfaces between cell n�1

and cell n, gives:

ZR
ðn�1ÞA_s ¼ ZL

ðn�1ÞB_s, (27)

ZR
ðn�1ÞB_s ¼ ZL

nA_s. (28)

From Eqs. (25)–(28), we obtain

ZR
nA ¼ TR

A_s � ðT
L
A_sÞ
�1 � ZL

nA, (29)

ZR
nB ¼ TR

B_s � ðT
L
B_sÞ
�1 � ZL

nB, (30)

ZL
nA ¼ TR

B_s � ðT
L
B_sÞ
�1 � TR

A_s � ðT
L
A_sÞ
�1 � ZL

ðn�1ÞA. (31)

Therefore, the transfer matrix in the straight periodic pipe is given as

Ts_cellA ¼ TR
A_s � ðT

L
A_sÞ
�1, (32)

Ts_cellB ¼ TR
B_s � ðT

L
B_sÞ
�1, (33)

Ts_cell ¼ TR
B_s � ðT

L
B_sÞ
�1 � TR

A_s � ðT
L
A_sÞ
�1. (34)

Due to the periodicity of the infinite structure in the axial direction, and in order to satisfy the Bloch theorem, we then
get

ZnA ¼ ejkaZðn�1ÞA, (35)

where k is the 1D wave vector in the z direction. It follows that the eigenvalues of the infinite periodic pipe structure are the
roots of the determinant:

jTs_cell � ejkaIj ¼ 0, (36)

where I is the 12�12 unit matrix. For given values of o, Eq. (36) gives the values of k. Depending on whether k is real or has
an imaginary part, the corresponding wave propagates through the pipe (pass band) or is damped (band gap).

For a finite periodic structure, we can calculate the frequency response curve to describe its transfer property of band
gaps. When the pipe consists of m periodic cells, we get

ZðnþmÞA ¼ Tm
s_cellZnA. (37)

4. Band structures and the coupled vibration FRFs calculation of the straight periodic pipe

For the periodic straight pipe shown in Fig. 1, we calculate the band structures assuming that the pipe material for pipe
A is epoxy and that for pipe B is steel. The density, Young’s modulus, and shear modulus of epoxy are 1180 kg m�3,
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0.435�1010 Pa, and 0.159�1010 Pa, whereas these values for steel are 7780 kg m�3, 21.60�1010 Pa, and 8.10�1010 Pa. The
lattice constant of the straight periodic pipe is chosen to be a ¼ 1 m, and a1 ¼ a2 ¼ 0.5 m. The inner and outer radii of the
pipe are chosen as ri ¼ 0.09 m and ro ¼ 0.1 m.

Fig. 3 shows the longitudinal vibration band structure of the periodic straight pipe. From Fig. 3, we can find that there
are two band gaps between 0 and 3500 Hz. The band gap frequency ranges are 462–1876 and 2017–3700 Hz. Within the
longitudinal vibration band gap frequency ranges, the propagation of longitudinal vibration waves is forbidden. Fig. 4
shows the flexural vibration band structure of the periodic straight pipe. From Fig. 4, it can be seen that there are seven
band gaps between 0 and 3500 Hz. These gaps occur between 81 and 91 Hz, 289.4 and 613.2 Hz, 766.8 and 1246 Hz, 1414.7
and 1844.5 Hz, 2156.9 and 2185 Hz, 2473.8 and 3001.2 Hz, and 3117.8 and 3500 Hz. Within these band gap frequency ranges,
the propagation of flexural vibration waves is forbidden. Fig. 5 shows the torsional vibration band structure for the periodic
straight pipe. There were four band gaps in Fig. 5 between 0 and 3500 Hz, 279.5 and 1135.9 Hz, 1220.3 and 2244.1 Hz,
2340.1 and 3055.2 Hz, and 3261.2 and 3477.5 Hz. From Fig. 5, it can be seen that the torsional vibration band gap ranges are
much wider and attenuation is stronger. If a kind of the three type wave excitation frequency were within the band gaps
frequency ranges, the straight periodic pipe would lack any vibration.

Observing the band structures of Figs. 3–5, it can be seen that there are six overlapping band gaps frequency ranges
between 0 and 3500 Hz, specifically at 462–613.2 Hz, 1220.3–1246 Hz, 1414.7–1844.5 Hz, 2156.9–2185.9 Hz,
2473.8–3001.2 Hz, and 3261.2–3477.5 Hz. Within these frequency ranges, the propagation of the longitudinal vibration,
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flexural vibration, torsional vibration, and their coupled modes is forbidden. Fig. 6 shows the three types vibration band
structure of the periodic straight pipe. The frequency ranges of the band gaps in Fig. 6 is just the overlapping band gaps
frequency ranges of Figs. 3–5. In a straight pipe, the flexural vibration wave, longitudinal vibration wave, and torsional
vibration wave can propagate individually. However, in the 3D pipe system, the wave energy which transfers among any
types of the three wave types would result in model coupling vibration during propagation, for example, when the flexural
wave propagates in the 3D periodic pipe, it could result in longitudinal vibration and torsional vibration. But in the periodic
straight pipe, the propagation of flexural wave will not result in longitudinal and torsional vibration. And the pipe vibration
would become complex and the band gaps would be different in the 3D pipe system. We will discuss it in the next section.
5. The FRFs of a 3D periodic pipe

Enlightened by the vibration reduction properties within the band gaps of the straight periodic pipe, we designed a 3D
pipe into a periodic structure as shown in Fig. 7. The pipe is composed of periodic straight pipes and curved pipes, and the
curved pipes are elbows or bent pipes with a constant curvature.

The pipe structure in Fig. 7 is the basic component section of a complex piping system. Therefore, understanding the
vibration properties of this system is an important factor in complex piping system vibration reduction. The elbows in Fig. 7
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can be treated as a collection of straight pipe sections [20], differing in orientation and joined end-to-end. Taking the elbow
in the x–z plane, for example, suppose an elbow with a curvature radius, R, and angle, y, and dividing it into m straight pipe
sections, we then can use the small straight pipes joined end-to-end to model the elbow as shown in Fig. 8(a).

From the equilibrium of pipe forces, bending moment, and the continuity of pipe displacement and rotation at the bend
point as shown in Fig. 8(b), we can obtain

UR
z

FR
z

UR
x

MR
y

CR
y

FR
x

2
666666666664

3
777777777775
¼

cos a 0 sin a 0 0 0

0 cos a 0 0 0 sin a
� sin a 0 cos a 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 � sin a 0 0 0 cos a

2
666666664

3
777777775

UL
z

FL
z

UL
x

ML
y

CL
y

FL
x

2
666666666664

3
777777777775

, (38)

which can be denoted as

ZR
cxz ¼ TcxzðaÞ � ZL

cxz. (39)

And from the equilibrium of pipe forces, bending moment, and the continuity of pipe displacement and rotation at the
bend point as shown in Fig. 8(c), we can obtain

UR
y

FR
y

CR
x

CR
z

MR
x

MR
z

2
666666666664

3
777777777775
¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos a � sin a 0 0

0 0 sin a cos a 0 0

0 0 0 0 cos a � sin a
0 0 0 0 sin a cos a

2
666666664

3
777777775

UL
y

FL
y

CL
x

CL
z

ML
x

ML
z

2
666666666664

3
777777777775

, (40)
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which can be denoted as

ZR
cyz ¼ TcyzðaÞ � ZL

cyz. (41)

Eqs. (37) and (39) can be composed as

ZR
c1 ¼ Tcs1ðaÞ � ZL

c1, (42)

where

Zc1 ¼ ½Zcxz Zcyz�
0; Tcs1ðaÞ ¼

TcxzðaÞ
TcyzðaÞ

" #
; a ¼ y=m.

Then, the vibration transfer matrix of the elbow in the x–z plane is denoted as

Tc1 ¼ Tcs1ða=2Þ � Tcs1ðaÞm�1 � Tcs1ða=2Þ. (43)
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In order to research the global vibration transfer property of the 3D periodic pipe, we use the chain rule in the FRF
calculation. The straight pipe vibration state vector and the curved pipe vibration state vector can be rearranged in a
uniform form

Zg ¼ ½UxðzÞ UyðzÞ UzðzÞ FxðzÞ FyðzÞ FzðzÞCxðzÞCyðzÞCzðzÞMxðzÞ ½MyðzÞMzðzÞ�
0. (44)

To make the transfer matrix compatible with the state vector, Zg, the columns and rows of the matrices in Eqs. (32)–(34)
and (43) must be rearranged. The straight pipe transfer matrix can be rearranged by a square matrix, ts, and the curved pipe
in the x–z plane can be rearranged by a square matrix, tc1. The transfer matrix in the y–z plane can be obtained by
exchanging the subscript x and y of the curved pipe state vector in the x–z plane and rearranging its corresponding transfer
matrix in the x–z plane. This can be carried out by a square matrix, tc2. The square matrices are given in Appendix.

At this point, the vibration transfer property of the 3D periodic pipe as shown in Fig. 7 is

ZP1
¼ Tgs_cell � Tgs_cellA � Tgc2 � Tgs_cellB � T

2
gs_cell � Tgs_cellA � Tgc1 � Tgs_cellB � Tgs_cell � ZP0

(45)

The inner and outer radii and materials are chosen to be the same as the periodic straight pipe. The curvature angle
and curvature radius of the elbow are chosen as: y ¼ 901 and R ¼ 0.1 m, respectively, and the material of the elbow is steel.
Figs. 9–11 show the FRFs of the longitudinal, flexural, and torsional component vibration in a coupled mode vibration,
respectively, of the 3D periodic pipe shown in Fig. 7. The dashed and solid lines in Figs. 9–11 correspond to the TM method
calculation and the MSC.Actran calculation, respectively. From these figures, it can be seen that the TM calculation agrees
very well with the MSC.Actran calculation; however, the results do not agree as well as the straight periodic pipe because of
the accumulation of error caused by the TM method in calculating complex pipe systems. It should also be noted that the
frequency ranges are nearly identical.

Comparing Fig. 3 with Fig. 9, Fig. 4 with Fig. 10, and Fig. 5 with Fig. 11, it can be seen that the longitudinal vibration band
gaps, the flexural vibration band gaps and the torsional vibration band gaps of the 3D periodic pipe is much as the same as
the band gaps of straight periodic pipe. And the corresponding types of vibration would be attenuated strongly within its
band gaps frequency ranges. This effectively illuminates the advantage of applying the idea of PCs along with the Bragg
scattering mechanism to pipe wall design to control piping system vibration. However, in the 3D pipe system, the wave
energy which transfers among any types of elastic wave would result in model coupling vibration during propagation,
therefore, the coupled mode vibration FRF should be calculated the investigate the vibration properties of the 3D periodic
pipe system.

Fig. 12 shows the FRFs of different wave excitation of the 3D periodic pipe. The solid, dashed and dash dotted lines are
corresponding to the flexural wave excitation, longitudinal wave excitation, and the coupled mode wave excitation of
flexural, longitudinal and torsional waves. Observing the solid line in Fig. 12, we can find that there are four band gaps, they
are: 260–340 Hz, 380–610 Hz, 780–1150 Hz and 1415–1745 Hz. There are three band gaps occurred in the dashed line, they
are: 260–610 Hz, 750–1180 Hz, and 1400–1780 Hz. And three band gaps in the coupled mode vibration, they are:
265–610 Hz, 750–1180 Hz, and 1380–1780 Hz. By now, we can find that the frequency ranges of the real band gaps of the 3D
periodic pipe system change little as the change of different wave type loads. Comparing the band gaps in Fig. 12 with the
band gaps in Fig. 6, we can find that no matter how the load case changed, the center frequency and frequency ranges of the
second and third band gaps are approximately the same as the band gaps in Fig. 6. That is because the frequency ranges of
the second and third band gap are the overlapped frequency ranges of longitudinal vibration, flexural vibration and
torsional vibration band gaps. Change much of the band gap frequency range is the first band gap. Observing the first band
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Fig. 9. The FRF of the longitudinal vibration component in the coupled mode vibration of the 3D periodic pipe, the solid and dashed lines are

corresponding the MSC and the TM calculation, respectively.
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gap in Fig. 6, we can find that between 0 and 450 Hz, there are no band gaps. However, there are overlapped frequency
ranges of the first band gaps between Figs. 3 and 4, Figs. 3 and 5, Figs. 4 and 5. Between 0 and 450 Hz of the FRFs in Fig. 12,
there appear band gaps, and this might be the coupled effect of the flexural vibration, longitudinal vibration and torsional
vibration. With the changed of different wave excitation, the flexural vibration ingredient, longitudinal ingredient and
torsional component will be changed, and that could affect the coupling mode of the 3D periodic pipe system, therefore,
the first band gaps of the FRFs of the 3D periodic pipe system will changed as the load case changed.
6. Conclusion

In this paper, based on the Bragg scattering mechanism of PCs, we designed a pipe constructed with a composite
material periodic structure. Using the TM method, we calculated the band structure of the flexural vibration, longitudinal
vibration, and torsional vibration band gaps of an infinite periodic structure. The results show that the vibration band gaps
attenuate vibrations effectively. From these results, we designed a 3D piping system with a composite material periodic
structure and studied its vibration transfer properties. The results show that the 3D periodic piping system still
demonstrates Bragg band gaps, and within these band gaps’ frequency ranges, vibration could be strongly attenuated. The
vibration-attenuating effect of this periodic pipe provides a novel way for vibration control in complex piping systems.
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Appendix. The location exchange rule of pipe vibration state vector

To make the pipe vibration compatible with the chain rule, the columns and rows of the transfer matrices must be
rearranged. First, the unaltered straight pipe vibration state vector is given as:

Zstraight ¼ ½UzðzÞ FzðzÞ UxðzÞ CyðzÞ MyðzÞ FxðzÞ UyðzÞ CxðzÞ MxðzÞ FyðzÞ CzðzÞ MzðzÞ�
0.

The uniform pipe vibration state, Zg, is given as

Zg ¼ ½UxðzÞ UyðzÞ UzðzÞ FxðzÞ FyðzÞ FzðzÞ CxðzÞ CyðzÞ CzðzÞ MxðzÞ MyðzÞ MzðzÞ�
0.

Comparing the state vectors in Zstraight and Zg , it can be seen that, for example, the third element, UxðzÞ, is now the first, and
the seventh element, UyðzÞ, is now the second. In a similar manner, the transfer matrix is rearranged. Row and column shifting

can be achieved in two steps: (i) the columns are rearranged by postmultiplying the transfer matrix, ts; (ii) the rearrangement

of rows is accomplished by premultiplying by tt
s. The straight pipe transfer matrixes, Ts_cell, Ts_cellA, and Ts_cellB in

Eqs. (32)–(34),are rearranged as Tgs_cell, Tgs_cellA, and Tgs_cellB; where Tgs_cell ¼ tt
s � Ts_cell � ts, Tgs_cellA ¼ tt

s � Ts_cellA � ts, and

Tgs_cellB ¼ tt
s � Ts_cellB � ts. Further, ts is given by

ts ¼

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
6666666666666666666666664

3
7777777777777777777777775

.

The previous curved pipe vibration state vector in the x–z plane is given as

Zc1 ¼ ½UzðzÞ FzðzÞ UxðzÞ MyðzÞ CyðzÞ FxðzÞ UyðzÞ FyðzÞ CxðzÞ CxðzÞ MzðzÞ�
0.
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Rearranging this to be in the uniform state vector form, Zg , using the above method for the straight pipe, the transfer matrix

of the curved pipe becomes Tgc1, and Tgc1 ¼ tt
c1 � Tc1 � tc1, where

tc1 ¼

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
6666666666666666666666664

3
7777777777777777777777775

.

Furthermore, the transfer matrix of the curved pipe in the y�z plane is Tgc2 ¼ tt
c2 � Tgc1 � tc2, where

tc2 ¼

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
6666666666666666666666664

3
7777777777777777777777775

.
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